En este blog podras encontrar videos, imagenes, actividades y muchas cosas mas a cerca de algunos temas como:desigualdades e inecuaciones (inecuaciones lineales,racionales,cuadraticas y valor absoluto), relaciones y funciones

miércoles, 7 de marzo de 2012

se puede obserbar mediante graficos diferentes tipos de  funciones  y como se realiza cada una de ellas maestro
estas son algunos graficos de como funcionan las graficas de funciones :P

FUNCIONES

En matemáticas, Las funciones trigonométricas son las funciones que se definen a fin de extender la definición de las razones trigonométricas a todos los números reales. Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.

Funciones algebraicas

En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:

Funciones explícitas

Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2

Funciones implícitas

Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0

Funciones polinómicas

Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +··· + anxn
Su dominio es R, es decir, cualquier número real tiene imagen.

Funciones constantes

El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.

Funciones polinómica de primer grado

f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Función afín.
Función lineal.
Función identidad.

Funciones cuadráticas

f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

Funciones a trozos

Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones en valor absoluto.
Función parte entera de x.
Función mantisa.
Función signo.

Funciones racionales

El criterio viene dado por un cociente entre polinomios:
Función racional
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.

Funciones radicales

El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

Funciones trascendentes

La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

Función exponencial

función
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ax se llama función exponencial de base a y exponente x.

Funciones logarítmicas

La función logarítmica en base a es la función inversa de la exponencial en base a.
función
función

Funciones trigonométricas

Función seno

f(x) = sen x

Función coseno

f(x) = cos x

Función tangente

f(x) = tg x

Función cosecante

f(x) = cosec x

Función secante

f(x) = sec x

Función cotangente

f(x) = cotg x







 GRÁFICA DE UNA FUNCION 

En las aplicaciones, es frecuente que una gráfica muestre con mayor claridad que una ecuación o una tabla, la relación que existe entre las variables de una función. Las ecuaciones y tablas que corresponden a una función, por lo general, requieren algunos cálculos e interpretaciones, antes de poder ver con claridad todo tipo de información contenidas en ellas.
Cuando la regla que define una función está dada mediante una ecuación que relaciona las variables x e y, la gráfica de f, es la gráfica de la ecuación, es decir, el conjunto de puntos (x, y) del plano cartesiano que satisfacen la ecuación. Mas precisamente,
Definición.Seauna función real de variable real. La gráfica de f es el conjunto de puntos  tales que la pareja ordenada (x, y) pertenece a f. Es decir, Gráfica de f = { (x, y)   / y = f(x), x  D(f) }
Observación.
La restricción dada en la definición de función de que no existen dos parejas distintas que tengan la primera componente igual, se traduce en la gráfica de la función de la siguiente manera: ninguna recta vertical puede cortar su gráfica en mas de un punto. (criterio de la recta vertical)








Así por ejemplo, la gráfica de la figura  corresponde a la gráfica de una función (la recta vertical solo corta la gráfica en el punto A); mientras que la figura 1(b) no corresponde a la gráfica de una función. Nótese que la recta vertical, corta la gráfica en mas de un punto: A, B y C.
Mas adelante se trazarán las gráficas de muchas funciones, al definir y especificar otros elementos teóricos útiles: (Asíntotas, máx, min, concavidad ...) y que permiten ver con mayor claridad la relación entre las variables x e y de una función y = f(x) .

NOTICIAS

El primer uso matemático del concepto de real de infinito se ha visto retrasado unos 2000 años. Y la culpa la tiene un nuevo análisis de las páginas de un pergamino en el que un monje medieval de Constantinopla copió la labor del griego Arquímedes.
El concepto de infinito es una de las cuestiones fundamentales en las matemáticas y aún hoy es un enigma. El pergamino reproduce 348 páginas escritas por Arquímedes, siendo esta la copia más antigua de los antiguos genios griegos.
En él, se han encontrando pruebas de que Arquímedes ya dió un “uso sistemático del concepto de infinito en una parte del documento llamado Teoremas del Método de la Mecánica. Para analizarlo, se ha examinado el pergamino con un nivel de detalle extraordinario, gracias al uso de imágenes multiespectrales y también a una técnica que utiliza un haz fino de rayos X desarrollada por la Universidad de Stanford. El escáner puede generar una imagen de un millón de píxeles en menos de una hora.
Esta novedosa lectura revela que Arquímedes se dedicaba a las matemáticas e hizo usos del concepto real de infinito, tales como el número de triángulos dentro de un prisma, o el número de líneas dentro de un rectángulo.










NIÑOS ABORIGENOS SON CAPAZ DE CONTAR SIN NUMEROS


Según un nuevo estudio sobre niños aborígenes australianos realizado por el University College de Londres y la Universidad de Melbourne, conocer las palabras para designar los números no es necesario para poder contar. En el estudio se examinó a ciertas poblaciones indígenas australianas que tienen vocabularios muy limitados para los números, trabajando con niños de edades comprendidas entre los cuatro y los siete años, de dos comunidades indígenas con difierente idioma. En ambas lenguas, existen palabras para uno, dos, algunos y muchos. Y tampoco parece haber ningún gesto para los números.
En el estudio, se comprobó que esa carencia de palabras o gestos para los números en los niños examinados no les impide realizar una serie de tareas relacionadas con ellos.
Los resultados de este nuevo estudio sugieren, por tanto, que los seres humanos poseemos un mecanismo innato para contar, que puede desarrollarse de forma diferente en los niños con discalculia, y que la falta de un vocabulario para los números no debe impedirnos realizar tareas numéricas que no requieran de palabras para designar los números. Este sistema innato para contar nos permite reconocer y representar el número de objetos de un conjunto






Encontrado el número primo de casi 13 millones de dígitos

 

Los números primos están de moda, y cada vez que se “descubre” uno nuevo es noticia. Recordemos que un número primo es aquel mayor que uno, divisible únicamente por el mismo y la unidad. Como es lógico, cada vez son más grandes, y el caso que nos ocupa se lleva el premio gordo. Casi 13 millones de dígitos tiene este número primo encontrado con un simple programa que utiliza casi la misma fracción de memoria que el protector de pantalla de un ordenador. Este programa se comunica a través de Internet con el servidor PrimeNet y trata de encontrar números primos de un tipo especial, llamados primos de Mersenne, que son de la forma 2^p-1, donde p es un número primo.
El protagonista es el 2^43,112,609-1, un número de casi 13 millones de dígitos, el cual le hace merecedor del premio de 100.000 dólares que la Fundación de Frontera Electrónica ofrecía al descubridor del primer número primo de al menos 10 millones de dígitos.
El número descubierto también se coloca en el lugar 45 de la lista de los récords de los números primos de Mersenne, establecida hace unos 2.500 años. Dos semanas después se halló el 46º primo de Mersenne (2^37156667 - 1) de casi 11 millones de dígitos pero por poquito, se quedó sin el premio.
El próximo reto es realmente colosal, con un premio de $150,000 dólares por el primer primo que se descubra de 100 millones de dígitos.


Un matemático calcula el récord definitivo de los 100 metros en 9.29

 

El matemático holandés John Einmahl, de la Universidad de Tilburgo, ha calculado el récord definitivo de 14 disciplinas atléticas y, entre ellas, el masculino de los 100 metros que él estima en 9.29 segundos apoyándose en la teoría de los valores extremos y en proyecciones estadísticas. Einmahl no pretende predecir los récords posibles en un futuro lejano sino, como lo dice expresamente su estudio, los récords que podrían darse bajo las condiciones actuales. La base de los cálculos de Einmahl son las mejores marcas de 1.546 atletas masculinos y 1024 atletas femeninas de élite de cada disciplina estudiada que luego somete a complicadas elaboraciones matemáticas con ayuda de un ordenador.
Según los cálculos de Einmahl, el récord del maratón entre los hombres, que posee el keniano Paul Tergat (2h.04:55) es especialmente notable puesto que el matemático holandés considera que sólo podría ser mejorado en 49 segundos. Entre las mujeres, en cambio, el récord de la británica Paula Radcliffe, de 2h.15:25, podría ser claramente mejorado en 8 minutos y 50 segundos.
Curiosamente, también en las pruebas de velocidad, en las que habitualmente se cree que se está muy cerca

del límite de lo humanamente posible, los cálculos de Einmahl apuntan a posibles mejoras. No sólo el récord de los 100 metros, que podría ser bajado de los 9.77 de Asafa Powell a 9.29, podría mejorar sino también el récord de 200 metros, en manos de Michael Johnson en 19.32, está casi un segundo por encima de lo posible.











lunes, 5 de marzo de 2012

INECUACIONES



Una inecuacion es una expresion matemantica la cual se caracteriza por tener los signos de orden (<, >, ≤ o ≥). siendo una expresion algebraica que nos da como resultado un conjunto en el cual la variable independiente puede tomar el valor cualquiera de ese conjunto cumpliendo esta desigualdad.