En matemáticas, Las funciones trigonométricas son las funciones que se definen a fin de extender la definición de las razones trigonométricas a todos los números reales.
Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.
Funciones algebraicas
En las
funciones algebraicas las operaciones que hay que efectuar con la
variable independiente son: la adición, sustracción, multiplicación,
división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2
Funciones implícitas
Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0
Funciones polinómicas
Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +··· + anxn
Su dominio es , es decir, cualquier número real tiene imagen.
Funciones constantes
El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.
Funciones polinómica de primer grado
f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Función afín.
Función lineal.
Función identidad.
Funciones cuadráticas
f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
Funciones a trozos
Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones en valor absoluto.
Función parte entera de x.
Función mantisa.
Función signo.
Funciones racionales
El criterio viene dado por un cociente entre polinomios:
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.
Funciones radicales
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una
función irracional de índice par está formado por todos los valores que
hacen que el radicando sea mayor o igual que cero.
Funciones trascendentes
La variable
independiente figura como exponente, o como índice de la raíz, o se
halla afectada del signo logaritmo o de cualquiera de los signos que
emplea la trigonometría.
Función exponencial
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ax se llama función exponencial de base a y exponente x.
Funciones logarítmicas
La función logarítmica en base a es la función inversa de la exponencial en base a.
Funciones trigonométricas
Función seno
f(x) = sen x
Función coseno
f(x) = cos x
Función tangente
f(x) = tg x
Función cosecante
f(x) = cosec x
Función secante
f(x) = sec x
Función cotangente
f(x) = cotg x
GRÁFICA DE UNA FUNCION
| |
En las aplicaciones, es frecuente que una gráfica muestre con mayor claridad que una ecuación o una tabla, la relación que existe entre las variables de una función. Las ecuaciones y tablas que corresponden a una función, por lo general, requieren algunos cálculos e interpretaciones, antes de poder ver con claridad todo tipo de información contenidas en ellas. Cuando la regla que define una función f está dada mediante una ecuación que relaciona las variables x e y, la gráfica de f, es la gráfica de la ecuación, es decir, el conjunto de puntos (x, y) del plano cartesiano que satisfacen la ecuación. Mas precisamente, Definición.Seauna función real de variable real. La gráfica de f es el conjunto de puntos tales que la pareja ordenada (x, y) pertenece a f. Es decir, Gráfica de f = { (x, y) / y = f(x), x D(f) } Observación. La restricción dada en la definición de función de que no existen dos parejas distintas que tengan la primera componente igual, se traduce en la gráfica de la función de la siguiente manera: ninguna recta vertical puede cortar su gráfica en mas de un punto. (criterio de la recta vertical) Mas adelante se trazarán las gráficas de muchas funciones, al definir y especificar otros elementos teóricos útiles: (Asíntotas, máx, min, concavidad ...) y que permiten ver con mayor claridad la relación entre las variables x e y de una función y = f(x) . |
No hay comentarios:
Publicar un comentario