El concepto de infinito es una de las cuestiones fundamentales en las matemáticas y aún hoy es un enigma. El pergamino reproduce 348 páginas escritas por Arquímedes, siendo esta la copia más antigua de los antiguos genios griegos.
En él, se han encontrando pruebas de que Arquímedes ya dió un “uso sistemático del concepto de infinito en una parte del documento llamado Teoremas del Método de la Mecánica. Para analizarlo, se ha examinado el pergamino con un nivel de detalle extraordinario, gracias al uso de imágenes multiespectrales y también a una técnica que utiliza un haz fino de rayos X desarrollada por la Universidad de Stanford. El escáner puede generar una imagen de un millón de píxeles en menos de una hora.
Esta novedosa lectura revela que Arquímedes se dedicaba a las matemáticas e hizo usos del concepto real de infinito, tales como el número de triángulos dentro de un prisma, o el número de líneas dentro de un rectángulo.
NIÑOS ABORIGENOS SON CAPAZ DE CONTAR SIN NUMEROS
Según un nuevo estudio sobre niños aborígenes australianos realizado por el University College de Londres y la Universidad de Melbourne, conocer las palabras para designar los números no es necesario para poder contar. En el estudio se examinó a ciertas poblaciones indígenas australianas que tienen vocabularios muy limitados para los números, trabajando con niños de edades comprendidas entre los cuatro y los siete años, de dos comunidades indígenas con difierente idioma. En ambas lenguas, existen palabras para uno, dos, algunos y muchos. Y tampoco parece haber ningún gesto para los números.
En el estudio, se comprobó que esa carencia de palabras o gestos para los números en los niños examinados no les impide realizar una serie de tareas relacionadas con ellos.
Los resultados de este nuevo estudio sugieren, por tanto, que los seres humanos poseemos un mecanismo innato para contar, que puede desarrollarse de forma diferente en los niños con discalculia, y que la falta de un vocabulario para los números no debe impedirnos realizar tareas numéricas que no requieran de palabras para designar los números. Este sistema innato para contar nos permite reconocer y representar el número de objetos de un conjunto
Encontrado el número primo de casi 13 millones de dígitos
Los números primos están de moda, y cada vez que se “descubre” uno nuevo es noticia. Recordemos que un número primo es aquel mayor que uno, divisible únicamente por el mismo y la unidad. Como es lógico, cada vez son más grandes, y el caso que nos ocupa se lleva el premio gordo. Casi 13 millones de dígitos tiene este número primo encontrado con un simple programa que utiliza casi la misma fracción de memoria que el protector de pantalla de un ordenador. Este programa se comunica a través de Internet con el servidor PrimeNet y trata de encontrar números primos de un tipo especial, llamados primos de Mersenne, que son de la forma 2^p-1, donde p es un número primo.
El protagonista es el 2^43,112,609-1, un número de casi 13 millones de dígitos, el cual le hace merecedor del premio de 100.000 dólares que la Fundación de Frontera Electrónica ofrecía al descubridor del primer número primo de al menos 10 millones de dígitos.
El número descubierto también se coloca en el lugar 45 de la lista de los récords de los números primos de Mersenne, establecida hace unos 2.500 años. Dos semanas después se halló el 46º primo de Mersenne (2^37156667 - 1) de casi 11 millones de dígitos pero por poquito, se quedó sin el premio.
El próximo reto es realmente colosal, con un premio de $150,000 dólares por el primer primo que se descubra de 100 millones de dígitos.
Un matemático calcula el récord definitivo de los 100 metros en 9.29
El matemático holandés John Einmahl, de la Universidad de Tilburgo, ha calculado el récord definitivo de 14 disciplinas atléticas y, entre ellas, el masculino de los 100 metros que él estima en 9.29 segundos apoyándose en la teoría de los valores extremos y en proyecciones estadísticas. Einmahl no pretende predecir los récords posibles en un futuro lejano sino, como lo dice expresamente su estudio, los récords que podrían darse bajo las condiciones actuales. La base de los cálculos de Einmahl son las mejores marcas de 1.546 atletas masculinos y 1024 atletas femeninas de élite de cada disciplina estudiada que luego somete a complicadas elaboraciones matemáticas con ayuda de un ordenador.
Según los cálculos de Einmahl, el récord del maratón entre los hombres, que posee el keniano Paul Tergat (2h.04:55) es especialmente notable puesto que el matemático holandés considera que sólo podría ser mejorado en 49 segundos. Entre las mujeres, en cambio, el récord de la británica Paula Radcliffe, de 2h.15:25, podría ser claramente mejorado en 8 minutos y 50 segundos.
Curiosamente, también en las pruebas de velocidad, en las que habitualmente se cree que se está muy cerca
No hay comentarios:
Publicar un comentario